Dehumidification and Cooling Loads From Ventilation Air

By Lewis G. Harriman III
Member ASHRAE

Dean Plager
and Douglas Kosar
Member ASHRAE

Ninety-five years since Willis Carrier began the modern era of air conditioning by dehumidifying a printing plant, our industry is becoming more concerned with the importance of controlling humidity in buildings. In part, this concern stems from indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads.

To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load.

Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings.

The proposed “ventilation load index” (VLI) is the total load generated by one cubic foot per minute of fresh air brought from the weather to space-neutral conditions over the course of one year. It consists of two numbers, separating the load into its dehumidification and cooling components: latent ton-hours per cfm per year and sensible ton-hours per cfm per year.

The “VLI” is proposed in the same spirit that led to the use of the “degree-day” as shorthand for expressing heating and cooling loads on the envelope of a building, or the SEER as a means of expressing the relative efficiency of cooling equipment over time. Those engineering shorthand values reduce great complexity to simple terms. Although they cannot replace detailed examination of the phenomena they represent, they allow rapid comparisons between similar items. In the same way, the ventilation load index allows for quick comparisons between loads in different geographic locations.

Latent vs. Sensible Ton-hours per SCFM per Year

To calculate the index for a given location, one must compare the temperature and humidity levels in the weather to the temperature and humidity in the conditioned space. Then a calculation is made for every hour of the year. One must also decide what values to use for “space-neutral” temperature and humidity set points to compare with the weather conditions.

In calculating the indexes contained in this article, “space-neutral” conditions are defined as 75°F (24°C), 50% rh (65 gr/lb [39 g/.45 kg]). One could equally choose different set points for specialty applications, but 75°F (24°C), 50% rh seems to represent values consistent with human comfort research findings. This set point is at the middle of the combined summer and winter comfort zones with respect to dry bulb temperature.

About the Authors

Lewis G. Harriman III is director of research at Mason-Grant, Portsmouth, N.H. He is the chair of the Handbook Subcommittee of ASHRAE Technical Committee 3.5 (Desiccant and Sorption Technologies) and is the author of *The Dehumidification Handbook*.

Dean Plager is senior analyst at Quantitative Decision Support, Portsmouth, N.H. He is also adjunct professor of quantitative analysis at the Whittemore School of Business Administration at the University of New Hampshire.

Douglas Kosar is principal product development manager at the Gas Research Institute, Chicago. His primary responsibility is development of gas-driven air treatment technologies for commercial buildings.
and towards the upper limit of 60% rh for moisture in the combined zones. The latent ton-hours per scfm in a given hour are calculated as follows:

\[
\text{Latent ton-hours per scfm} = \frac{(\text{Outside air humidity ratio} - 65 \text{ gr/lb}) \times 4.5 \times 1050}{7000 \times 12000}
\]

\(4.5 = \text{lbs of air per hour per cfm}\)

\(7000 = \text{grains of water vapor per lb}\)

\(1050 = \text{heat of vaporization of water at standard temperature and pressure in Btu per lb}\)

\(12000 = \text{represents the Btu's per hour of one ton of air-conditioning capacity}\)

The values for each of the 8760 hours of the year are calculated and summed to form the latent (dehumidification) load portion of the index.

Similarly, the sensible ton-hours per cfm in a given hour are calculated as follows:

\[
\text{Sensible ton-hours per scfm} = \frac{(\text{Outside dry bulb} - 75^\circ F) \times 4.5 \times 1.08}{12000}
\]

Where the outside dry bulb is the average dry bulb temperature in degrees Fahrenheit, 1.08 is the specific heat of air at standard temperature and pressure in Btu per degree Fahrenheit per lb and 12000 represents the number of Btu's per hour of one ton of air-conditioning capacity. To arrive at the value for the annual sensible heat load, separate calculations are made for each of the 8760 hours of typical weather observations for a given location.

Note that the index does not consider hours when no load exists. If, for example, the outdoor dry bulb temperature is 75°F (24°C), then there is no sensible load added to the cumulative total from that hour’s observation. Likewise, the index does not consider either “free cooling” or “free dehumidification.” For example, if the humidity ratio in the weather air is below the indoor set point of 65 gr/lb (39 g/0.45 kg), then no “credit” is subtracted from the cumulative total annual latent load for that hour.

Advantages of the VLI

There are several useful advantages of this index. Perhaps most importantly, it represents the cumulative annual load, as opposed to the load at only a single point of operation. In addition, the index has other advantages:

- **Small numbers in both I-P and S-I units**

As can be seen from the values in Table 1, the index yields values which are small numbers, making variations between different locations apparent at a glance. Also, when the index is recalculated using S-I units (kWh/l/sec per year) the values are similarly small.

- **Encourages examination of system behavior in different operating modes**

In weather systems, temperature and moisture levels are related, but they vary independently. Therefore an air-conditioning system may cool without dehumidifying or dehumidify without cooling. By separating and quantifying the annual loads for the latent and sensible components of the total load, the index encourages the engineer to consider whether the ventilation system is in fact capable of controlling temperature and humidity independently, as suggested by weather variations.

Calculation Methodology

The TMY-2 data set of hourly weather observations and a newly-developed computer program which accesses those data sets in order to perform annual summaries were used to calculate the indexes displayed in Table 1.

Annual data set: TMY-2

The TMY-2 data set was selected for several reasons. First, it contains complete records for 239 locations within the United States, by far the largest number of credible and complete annual records available at the present time. Secondly, the data shows observed values, rather than averaged values, and the methodology for constructing a TMY-2 data set is well-documented and repeatable. Finally, the records were produced for the U.S. Department of Energy using public funds, and as such, are nonproprietary, in the public domain and readily available to the public.

The acronym TMY stands for “Typical Meteorological Year.” That methodology selects “typical” months of weather observations from a long-term record of hourly observations. A “typical” month is selected based on how closely it con-

Table 1: Ventilation Load Indexes calculated by the BIN program.

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Latent + Sensible</th>
<th>Cumulative Load Index (Ton/hrscfm/yr)</th>
<th>Cumulative Load Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuquerque</td>
<td>NM</td>
<td>0.2 + 1.0</td>
<td>1.2</td>
<td>0.2:1</td>
</tr>
<tr>
<td>Boston</td>
<td>MA</td>
<td>2.0 + 0.3</td>
<td>2.3</td>
<td>6.4:1</td>
</tr>
<tr>
<td>Detroit</td>
<td>MI</td>
<td>2.4 + 0.3</td>
<td>2.7</td>
<td>7.4:1</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>MN</td>
<td>2.4 + 0.4</td>
<td>2.9</td>
<td>6.2:1</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>PA</td>
<td>2.5 + 0.4</td>
<td>2.9</td>
<td>5.8:1</td>
</tr>
<tr>
<td>New York</td>
<td>NY</td>
<td>2.6 + 0.5</td>
<td>3.1</td>
<td>5.1:1</td>
</tr>
<tr>
<td>Chicago</td>
<td>IL</td>
<td>2.6 + 0.5</td>
<td>3.1</td>
<td>5.0:1</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>NV</td>
<td>0.2 + 3.7</td>
<td>3.9</td>
<td>0.04:1</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>IN</td>
<td>4.0 + 0.6</td>
<td>4.6</td>
<td>6.6:1</td>
</tr>
<tr>
<td>Lexington</td>
<td>KY</td>
<td>4.1 + 0.6</td>
<td>4.7</td>
<td>7.4:1</td>
</tr>
<tr>
<td>Colorado Spr.</td>
<td>CO</td>
<td>0.6 + 4.2</td>
<td>4.8</td>
<td>0.1:1</td>
</tr>
<tr>
<td>Omaha</td>
<td>NE</td>
<td>4.0 + 0.8</td>
<td>4.8</td>
<td>5.3:1</td>
</tr>
<tr>
<td>Phoenix</td>
<td>AZ</td>
<td>1.3 + 5.0</td>
<td>6.2</td>
<td>0.3:1</td>
</tr>
<tr>
<td>St. Louis</td>
<td>MO</td>
<td>5.3 + 1.1</td>
<td>6.4</td>
<td>4.7:1</td>
</tr>
<tr>
<td>Oklahoma City</td>
<td>OK</td>
<td>5.0 + 1.6</td>
<td>6.6</td>
<td>3.2:1</td>
</tr>
<tr>
<td>Richmond</td>
<td>VA</td>
<td>5.9 + 0.8</td>
<td>6.7</td>
<td>7.2:1</td>
</tr>
<tr>
<td>Raleigh</td>
<td>NC</td>
<td>6.0 + 0.9</td>
<td>6.9</td>
<td>6.8:1</td>
</tr>
<tr>
<td>Atlanta</td>
<td>GA</td>
<td>6.2 + 0.9</td>
<td>6.9</td>
<td>6.7:1</td>
</tr>
<tr>
<td>Nashville</td>
<td>TN</td>
<td>6.2 + 1.4</td>
<td>7.5</td>
<td>4.6:1</td>
</tr>
<tr>
<td>Little Rock</td>
<td>AK</td>
<td>7.3 + 1.6</td>
<td>8.8</td>
<td>4.7:1</td>
</tr>
<tr>
<td>Charleston</td>
<td>SC</td>
<td>9.0 + 1.2</td>
<td>10.3</td>
<td>7.3:1</td>
</tr>
<tr>
<td>San Antonio</td>
<td>TX</td>
<td>10.4 + 2.4</td>
<td>12.8</td>
<td>4.4:1</td>
</tr>
<tr>
<td>New Orleans</td>
<td>LA</td>
<td>12.3 + 1.8</td>
<td>14.1</td>
<td>6.8:1</td>
</tr>
<tr>
<td>Miami</td>
<td>FL</td>
<td>17.8 + 2.7</td>
<td>20.5</td>
<td>6.7:1</td>
</tr>
</tbody>
</table>
forms to the mean values of a given variable for that month over the 30-year period. So the TMY-2 file for a specific site may consist of its January record from 1962, February from 1975, March from 1981 and so forth.

The methodology allows for weighting different values more or less heavily for "typicality." In the current set, for example, solar observations are weighted slightly more heavily than the dry bulb temperature and the dew point. Consequently, the months selected contain solar data which are slightly "more average" than the dry bulb and dew-point data, and the temperature and humidity is slightly "more average" than the remaining values of wind-speed, precipitation and so forth. Given that 24 simultaneous variables can never have "typical" values in every one of the 8760 hours per year, the TMY-2 record containing "typical months" of actual observed data represents weather behavior better than older methodologies, which selected a single variable and then calculated averages for some of the other variables rather than recording the actual simultaneous observed data.

Calculation engine: BIN calculation program

The computer program which calculated the indices was developed initially to produce custom BIN data and joint-frequency tables of temperature, dew point and wind speed for use in estimating annual energy consumption of HVAC systems and unitary equipment. A public version of the program is under development, funded by the Gas Research Institute in cooperation with committees of ARI and ASHRAE. The program is written in a popular graphical version of the BASIC programming language. It runs on the most widely-used operating system for personal computers that are

See Harriman, Page 42

Fig. 2: Cumulative dehumidification and cooling loads from ventilation air for selected locations in the United States.

Advertisement in the print edition formerly in this space.

Advertisement in the print edition formerly in this space.
equipped with at least eight megabytes of RAM and a CD-ROM drive. The program and all 239 TMY-2 files are contained on a single CD-ROM disk.

The “ventilation air pretreatment” routine looks at each hour’s dry bulb temperature and humidity ratio and calculates the difference from the building’s set points for temperature and humidity. The program allows the user to select the set point values for air delivered to the building. For these indexes, 75°F (24°C), 50% rh, 65 gr/lb (39 g/0.45 kg) were chosen. Then the program totals loads for each of the 8760 hours in the TMY-2 file selected by the user. The routine accumulates the loads for sensible and latent heat separately, because there are many hours when one load is present without the other. For example, if the outdoor temperature is 74°F (23°C) in a given hour, there is no sensible load. But if the moisture outdoors during that same hour is 85 gr/lb (5.5 g/0.45 kg), then there is a moisture load to be removed when ventilation air is brought to the target value of 65 gr/lb (39 g/0.45 kg).

By using an hour-by-hour calculation, the procedure avoids the distortion of traditional BIN summaries. For example, when weather observations are “BINned” by temperature with mean coincident (average) values for moisture, annual latent loads are underestimated by 25 to 35% of their true dimension. Likewise, BINning the observations by dew point and averaging the coincident values for dry bulb temperature would underestimate the sensible load by 10 to 20%. The program’s ventilation air subroutine produces more meaningful indexes because they are non-averaged, separate values for latent and sensible loads.

Validation of Pretreatment Subroutine Results

A separate program, operated by a second programmer, was used to generate values for all stations and to compare them to results produced by the BIN program. The check program used was a general-purpose statistical analysis program designed to run on workstations.9

The check program was customized by the addition of commercially-available psychrometric subroutines.10 The agreement between the BIN program and the statistical analysis program was good. Specifically, the R² value for the sensible load values was 0.98 and the R² value for latent loads was 0.97. Table 1 contains a few of the index values calculated by the BIN program. Several interesting points become clear from the information presented in that table.

Differences Between Latent and Sensible Loads

One might expect that sensible heat loads and moisture loads generated by ventilation air would be similar, but that is not the case. None of the locations shown here have equal latent and sensible loads. In fact, all locations have loads that differ by at least 3:1, and loads at most locations differ by 4:1 or greater.

Latent Loads Compared to Sensible Loads

Except for desert climates, the latent loads are always higher than the sensible loads. Even in San Antonio, Texas, and Oklahoma City, which most would assume have arid climates, the annual latent load exceeds the sensible load by four and five times, respectively.

As one would expect, the total annual cooling loads are larger in southern climates and smaller in northern locations.

See Harriman, Page 44
Harriman, From Page 44

For example, the sum of the latent and sensible loads in Miami are 20.5 ton-hours per scfm per year, and loads in Boston only total 2.3 ton-hours per scfm per year—Miami’s load is nearly nine times that of Boston. However, the ratio of latent to sensible loads does not always vary by similar amounts between locations. In “humid” Miami, the latent load exceeds the sensible by 6.7:1. But in “dry” Boston, the latent load still exceeds the sensible load by 6.4:1.

Possible Implications for System Design

The implications of the indices for system design will vary according to the importance of controlling humidity and the volume of outside air needed for a given application. Where ventilation air is a high proportion of the total airflow, latent loads probably require more attention in the future than they have received in the past. Examples would include high-occupancy areas such as a classroom, theater, restaurant, retail store or health-care facility.

Where there is an economic benefit to controlling humidity combined with large ventilation loads, the ventilation air should be examined carefully and perhaps singled-out for attention separate from the balance of the system. This suggestion is supported by the fact that the latent and sensible loads are so different in dimension and are seldom concurrent. Independent control of temperature and humidity would allow closer control of each variable.

Where there is an economic benefit to such control, a moisture removal system for ventilation air, combined with a sensible heat removal system for the combined supply air, would reduce variation in temperature and moisture levels. Examples might include laboratory systems, where temperature or moisture excursions might cost money, or printing and electronic assembly, where humidity variations can slow or stop high-speed, automated processes.

Annual Loads vs. Peak Design

Using TMY-2 records to examine loads on an annual basis is useful for evaluating configurations, components and controls; but average data does not yield the peak design loads needed for sizing equipment. By definition, the TMY loads are typical rather than extreme. ASHRAE Technical Committees 4.2 (Engineering Weather Data) and 3.5 (Desiccant and Sorption Technologies) collaborated on a joint research project which addresses this problem. The results of this project are printed in Chapter 24 of the 1997 ASHRAE Handbook—Fundamentals. For the first time, the correct and separate peak values for temperature and moisture are provided for the designer.

Summary

Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented in Table 1 to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook—Fundamentals, which includes separate values for peak moisture and peak temperature.

Acknowledgments

The authors would like to thank the Gas Research Institute for the financial support necessary for the BIN program devel-

Table 2: Ventilation cooling load indexes for 48 states.
<table>
<thead>
<tr>
<th>City</th>
<th>Tons-Hours per SCFM Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington</td>
<td>9.8 1.2</td>
</tr>
<tr>
<td>North Dakota</td>
<td>Bismarck 1.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Fargo 1.7 0.4</td>
</tr>
<tr>
<td></td>
<td>Minot 0.6 0.3</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Grand Island 2.6 0.8</td>
</tr>
<tr>
<td></td>
<td>Norfolk 2.4 0.8</td>
</tr>
<tr>
<td></td>
<td>North Platte 1.3 0.8</td>
</tr>
<tr>
<td></td>
<td>Omaha 4.0 0.8</td>
</tr>
<tr>
<td></td>
<td>Scottsbluff 0.5 0.8</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Concord 2.0 0.4</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Atlantic City 4.1 0.6</td>
</tr>
<tr>
<td></td>
<td>Newark 3.1 0.6</td>
</tr>
<tr>
<td>New Mexico</td>
<td>Albuquerque 0.2 1.0</td>
</tr>
<tr>
<td></td>
<td>Tucumcari 1.0 1.3</td>
</tr>
<tr>
<td>Nevada</td>
<td>Elko 0.0 0.6</td>
</tr>
<tr>
<td></td>
<td>Ely 0.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Las Vegas 0.2 3.7</td>
</tr>
<tr>
<td></td>
<td>Reno 0.0 0.8</td>
</tr>
<tr>
<td></td>
<td>Tonopah 0.0 0.9</td>
</tr>
<tr>
<td></td>
<td>Winnemucca 0.1 1.0</td>
</tr>
<tr>
<td>New York</td>
<td>Albany 2.3 0.4</td>
</tr>
<tr>
<td></td>
<td>Binghamton 2.2 0.1</td>
</tr>
<tr>
<td></td>
<td>Buffalo 1.9 0.2</td>
</tr>
<tr>
<td></td>
<td>Massena 2.1 0.2</td>
</tr>
<tr>
<td></td>
<td>New York City 2.6 0.5</td>
</tr>
<tr>
<td></td>
<td>Rochester 2.4 0.4</td>
</tr>
<tr>
<td></td>
<td>Syracuse 2.1 0.3</td>
</tr>
<tr>
<td>Ohio</td>
<td>Akron 2.5 0.3</td>
</tr>
<tr>
<td></td>
<td>Cleveland 2.4 0.4</td>
</tr>
<tr>
<td></td>
<td>Columbus 2.8 0.5</td>
</tr>
<tr>
<td></td>
<td>Dayton 2.9 0.4</td>
</tr>
<tr>
<td></td>
<td>Mansfield 2.5 0.4</td>
</tr>
<tr>
<td></td>
<td>Toledo 2.5 0.4</td>
</tr>
<tr>
<td></td>
<td>Youngstown 2.6 0.3</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Oklahoma City 5.0 1.6</td>
</tr>
<tr>
<td></td>
<td>Tulsa 6.5 2.0</td>
</tr>
<tr>
<td>Oregon</td>
<td>Astoria 0.2 0.0</td>
</tr>
<tr>
<td></td>
<td>Burns 0.0 0.3</td>
</tr>
<tr>
<td></td>
<td>Eugene 0.2 0.3</td>
</tr>
<tr>
<td></td>
<td>Medford 0.0 0.9</td>
</tr>
<tr>
<td></td>
<td>North Bend 0.1 0.0</td>
</tr>
<tr>
<td></td>
<td>Pendleton 0.1 0.7</td>
</tr>
<tr>
<td></td>
<td>Portland 1.8 2.3</td>
</tr>
<tr>
<td></td>
<td>Redmond 0.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Salem 0.1 0.3</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Altoona 3.2 0.4</td>
</tr>
<tr>
<td></td>
<td>Bradford 1.5 0.1</td>
</tr>
<tr>
<td></td>
<td>Erie 2.4 0.2</td>
</tr>
<tr>
<td></td>
<td>Harrisburg 3.2 0.7</td>
</tr>
<tr>
<td></td>
<td>Philadelphia 4.1 0.6</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh 2.5 0.4</td>
</tr>
<tr>
<td></td>
<td>Wilkes-Barre 2.5 0.3</td>
</tr>
<tr>
<td></td>
<td>Williamsport 3.4 0.4</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Providence 2.4 0.3</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Charleston 9.0 1.2</td>
</tr>
<tr>
<td></td>
<td>Columbia 7.8 1.4</td>
</tr>
<tr>
<td></td>
<td>Greenville 5.8 0.9</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Huron 2.1 0.5</td>
</tr>
<tr>
<td></td>
<td>Pierre 1.3 0.8</td>
</tr>
<tr>
<td></td>
<td>Rapid City 0.3 0.5</td>
</tr>
<tr>
<td></td>
<td>Sioux Falls 1.9 0.8</td>
</tr>
<tr>
<td>Tennessee</td>
<td>Bristol 4.2 0.5</td>
</tr>
<tr>
<td></td>
<td>Chattanooga 6.3 1.2</td>
</tr>
<tr>
<td></td>
<td>Knoxville 6.4 0.8</td>
</tr>
<tr>
<td></td>
<td>Memphis 7.8 1.6</td>
</tr>
<tr>
<td></td>
<td>Nashville 6.2 1.4</td>
</tr>
<tr>
<td>Texas</td>
<td>Abilene 4.2 2.1</td>
</tr>
<tr>
<td></td>
<td>Amarillo 1.4 1.2</td>
</tr>
<tr>
<td></td>
<td>Austin 10.4 2.4</td>
</tr>
<tr>
<td></td>
<td>Brownsville 16.4 2.6</td>
</tr>
<tr>
<td></td>
<td>Corpus Christi 16.7 2.5</td>
</tr>
<tr>
<td></td>
<td>El Paso 1.2 2.2</td>
</tr>
<tr>
<td></td>
<td>Fort Worth 7.6 2.1</td>
</tr>
<tr>
<td></td>
<td>Houston 13.3 2.1</td>
</tr>
<tr>
<td></td>
<td>Lubbock 2.3 1.3</td>
</tr>
<tr>
<td></td>
<td>Lufkin 10.8 1.9</td>
</tr>
<tr>
<td></td>
<td>Midland 2.4 2.0</td>
</tr>
<tr>
<td></td>
<td>Port Arthur 14.0 1.9</td>
</tr>
<tr>
<td></td>
<td>San Angelo 4.4 2.0</td>
</tr>
<tr>
<td></td>
<td>San Antonio 10.4 2.4</td>
</tr>
<tr>
<td></td>
<td>Victoria 13.8 2.2</td>
</tr>
<tr>
<td></td>
<td>Waco 8.2 2.3</td>
</tr>
<tr>
<td></td>
<td>Wichita Falls 6.4 2.4</td>
</tr>
<tr>
<td>Utah</td>
<td>Cedar City 0.0 0.7</td>
</tr>
<tr>
<td></td>
<td>Salt Lake City 0.1 1.1</td>
</tr>
<tr>
<td>Virginia</td>
<td>Lynchburg 4.0 0.7</td>
</tr>
<tr>
<td></td>
<td>Norfolk 6.5 0.8</td>
</tr>
<tr>
<td></td>
<td>Richmond 5.9 0.8</td>
</tr>
<tr>
<td></td>
<td>Roanoke 4.1 0.6</td>
</tr>
<tr>
<td></td>
<td>Sterling 4.6 0.7</td>
</tr>
<tr>
<td>Vermont</td>
<td>Burlington 1.8 0.3</td>
</tr>
<tr>
<td>Washington</td>
<td>Olympia 0.2 0.2</td>
</tr>
<tr>
<td></td>
<td>Quillayute 0.1 0.0</td>
</tr>
<tr>
<td></td>
<td>Seattle 0.1 0.1</td>
</tr>
<tr>
<td></td>
<td>Spokane 0.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Yakima 0.0 0.5</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Eau Claire 2.1 0.3</td>
</tr>
<tr>
<td></td>
<td>Green Bay 2.0 0.3</td>
</tr>
<tr>
<td></td>
<td>La Crosse 2.8 0.4</td>
</tr>
<tr>
<td></td>
<td>Madison 2.2 0.4</td>
</tr>
<tr>
<td></td>
<td>Milwaukee 2.2 0.3</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Charleston 4.0 0.5</td>
</tr>
<tr>
<td></td>
<td>Elkton 2.8 0.2</td>
</tr>
<tr>
<td></td>
<td>Huntington 4.5 0.6</td>
</tr>
<tr>
<td>Wyoming</td>
<td>Casper 0.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Cheyenne 0.0 0.3</td>
</tr>
<tr>
<td></td>
<td>Lander 0.0 0.4</td>
</tr>
<tr>
<td></td>
<td>Rock Springs 0.0 0.3</td>
</tr>
<tr>
<td></td>
<td>Sheridan 0.0 0.5</td>
</tr>
</tbody>
</table>

References

6. 1993 ASHRAE Handbook—Fundamentals, Figure 5, Chapter 8, Standard effective temperature and ASHRAE comfort zones. ASHRAE, Atlanta, GA.

11. Colliver, Donald, Ph.D, P.E. et al. Determination of the 0.4%, 1% and 2% annual occurrences of temperature and moisture and the 99% and 98% occurrences of temperature for 1400 national and international locations. 1997. ASHRAE Research Project RP-890, ASHRAE, Atlanta, GA.